Cominimum additive operators

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Additive Maps Preserving Idempotency of Products or Jordan Products of Operators

Let $mathcal{H}$ and $mathcal{K}$ be infinite dimensional Hilbert spaces, while $mathcal{B(H)}$ and $mathcal{B(K)}$ denote the algebras of all linear bounded operators on $mathcal{H}$ and $mathcal{K}$, respectively. We characterize the forms of additive mappings from $mathcal{B(H)}$ into $mathcal{B(K)}$ that preserve the nonzero idempotency of either Jordan products of operators or usual produc...

متن کامل

Strongly Additive Transformations and Integral Representations with Measures of Nonlinear Operators

In the development of the representation theory for linear transformations on function spaces by integrals, historically three different stages can be distinguished : in stage (I) one considers scalar valued transformations (functionals) on scalar valued functions, in stage (II) the transformations (stage (IIA)) or the functions (stage (IIB)) assume values in a topological vector space, and in ...

متن کامل

A Remark on Supra-additive and Supra-multiplicative Operators on C(x)

M.Radulescu proved the following result: Let X be a compact Hausdorff topological space and π : C(X)→ C(X) a supra-additive and supra-multiplicative operator. Then π is linear and multiplicative. We generalize this result to arbitrary topological spaces.

متن کامل

Additive and Multiplicative Perturbations of Exponentially Dichotomous Operators on General Banach Spaces

Recent perturbation results for exponentially dichotomous operators are generalized, in part by replacing compactness conditions on the perturbation by resolvent compactness. Both additive and multiplicative perturbations are considered. Mathematics Subject Classification (2000). Primary 47D06; Secondary 47A55.

متن کامل

Linear Operators Which Preserve Pairs on Which the Rank Is Additive

Let A and B be m n matrices. A linear operator T preserves the set of matrices on which the rank is additive if rank(A + B) = rank(A) + rank(B) implies that rank(T (A) + T(B)) = rankT (A) + rankT (B). We characterize the set of all linear operators which preserve the set of pairs of n n matrices on which the rank is additive.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Economics

سال: 2007

ISSN: 0304-4068

DOI: 10.1016/j.jmateco.2006.07.007